Package: fable.binary 0.1.0

fable.binary: Forecasting Binary Time Series

Provides a collection of time series forecasting models suitable for binary time series. These models work within the 'fable' framework provided by the 'fabletools' package, which provides the tools to evaluate, visualise, and combine models in a workflow consistent with the tidyverse.

Authors:Rob Hyndman [aut, cre, cph], Mitchell O'Hara-Wild [aut]

fable.binary_0.1.0.tar.gz
fable.binary_0.1.0.zip(r-4.5)fable.binary_0.1.0.zip(r-4.4)fable.binary_0.1.0.zip(r-4.3)
fable.binary_0.1.0.tgz(r-4.4-any)fable.binary_0.1.0.tgz(r-4.3-any)
fable.binary_0.1.0.tar.gz(r-4.5-noble)fable.binary_0.1.0.tar.gz(r-4.4-noble)
fable.binary_0.1.0.tgz(r-4.4-emscripten)fable.binary_0.1.0.tgz(r-4.3-emscripten)
fable.binary.pdf |fable.binary.html
fable.binary/json (API)
NEWS

# Install 'fable.binary' in R:
install.packages('fable.binary', repos = c('https://robjhyndman.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidyverts/fable.binary/issues

Datasets:
  • melb_rain - Daily rainfall in Melbourne, Australia

On CRAN:

2.85 score 7 stars 4 scripts 1 mentions 4 exports 51 dependencies

Last updated 12 months agofrom:be338e93a8. Checks:OK: 7. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:%>%as_tsibbleBINNETLOGISTIC

Dependencies:anytimeBHclicolorspacecpp11digestdistributionaldplyrellipsisfabletoolsfansifarvergenericsggdistggplot2gluegtableisobandlabelinglatticelifecyclelubridatemagrittrMASSMatrixmgcvmunsellnlmennetnumDerivpillarpkgconfigprogressrpurrrquadprogR6RColorBrewerRcpprlangscalesstringistringrtibbletidyrtidyselecttimechangetsibbleutf8vctrsviridisLitewithr