Package: fable.binary (via r-universe)

November 22, 2024

Title Forecasting Binary Time Series

Version 0.1.0

Description Provides a collection of time series forecasting models suitable for binary time series. These models work within the 'fable' framework provided by the 'fabletools' package, which provides the tools to evaluate, visualise, and combine models in a workflow consistent with the tidyverse.

License GPL-3

URL https://tidyverts.github.io/fable.binary

BugReports https://github.com/tidyverts/fable.binary/issues

Depends R (>= 3.4.0), fabletools (>= 0.3.0)

Imports distributional, dplyr (>= 1.0.0), nnet, purrr, rlang (>= 0.4.6), stats, tibble, tidyr, tsibble (>= 0.9.0)

Suggests broom, testthat (>= 3.0.0)

ByteCompile true

Encoding UTF-8

Language en-GB

Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace'))

RoxygenNote 7.2.3

LazyData true

Config/testthat/edition 3

Config/pak/sysreqs libicu-dev

Repository https://robjhyndman.r-universe.dev

RemoteUrl https://github.com/tidyverts/fable.binary

RemoteRef HEAD

RemoteSha be338e93a81dfa12484f3639cfc516e76bf3d102

2 BINNET

Contents

	BINNET	2
	fitted.BINNET	3
	fitted.LOGISTIC	4
	forecast.BINNET	4
	forecast.LOGISTIC	5
	generate.BINNET	6
	generate.LOGISTIC	6
	glance.BINNET	7
	glance.LOGISTIC	7
	LOGISTIC	8
	melb_rain	9
	refit.BINNET	10
	refit.LOGISTIC	10
	residuals.BINNET	11
	residuals.LOGISTIC	11
	tidy.BINNET	12
	tidy.LOGISTIC	13
Index		14

BINNET

Neural Network Binary Time Series Forecasts

Description

Feed-forward neural networks with a single hidden layer and lagged inputs for forecasting univariate binary time series.

Usage

```
BINNET(formula, n_nodes = NULL, n_networks = 20, scale_inputs = TRUE, ...)
```

Arguments

formula	Model specification (see "Specials" section).
n_nodes	Number of nodes in the hidden layer. Default is half of the number of external regressors plus 1.
n_networks	Number of networks to fit with different random starting weights. These are then averaged when producing forecasts.
scale_inputs	If TRUE, inputs are scaled by subtracting the column means and dividing by their respective standard deviations.
	Other arguments passed to \link[nnet]{nnet}.

fitted.BINNET 3

Details

A feed-forward neural network is fitted with a single hidden layer containing size nodes.

Exogenous regressors are used as inputs. A total of repeats networks are fitted, each with random starting weights. These are then averaged when computing forecasts.

Value

A model specification.

Examples

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year")))
```

fitted.BINNET

Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage

```
## S3 method for class 'BINNET'
fitted(object, ...)
```

Arguments

```
object Fitted model
... Other arguments ignored
```

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year"))) |>
  fitted()
```

4 forecast.BINNET

fitted.LOGISTIC

Extract fitted values from a fable model

Description

Extracts the fitted values.

Usage

```
## S3 method for class 'LOGISTIC'
fitted(object, ...)
```

Arguments

object Fitted model

... Other arguments ignored

Examples

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year"))) |>
  fitted()
```

 ${\tt forecast.BINNET}$

Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage

```
## S3 method for class 'BINNET'
forecast(object, new_data, specials = NULL, simulate = TRUE, times = 5000, ...)
```

Arguments

object	A model for which forecasts are required.
new_data	A tsibble containing the time points and exogenous regressors to produce forecasts for.
specials	<pre>(passed by fabletools::forecast.mdl_df()).</pre>
simulate	If TRUE, then forecast distributions are computed using simulation from a Bernoulli model.
times	The number of sample paths to use in estimating the forecast distribution when simulate = TRUE.
	Other arguments passed to methods

forecast.LOGISTIC 5

Examples

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year"))) |>
  forecast(times = 10)
```

forecast.LOGISTIC

Forecast a model from the fable package

Description

Produces forecasts from a trained model.

Usage

```
## $3 method for class 'LOGISTIC'
forecast(
  object,
  new_data,
  specials = NULL,
  simulate = FALSE,
  times = 5000,
  ...
)
```

Arguments

object	A model for which forecasts are required.
new_data	A tsibble containing the time points and exogenous regressors to produce forecasts for.
specials	<pre>(passed by fabletools::forecast.mdl_df()).</pre>
simulate	If TRUE, then forecast distributions are computed using simulation from a Bernoulli model.
times	The number of sample paths to use in estimating the forecast distribution when simulate = TRUE.
	Other arguments passed to methods

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year"))) |>
  forecast(h = "2 years")
```

6 generate.LOGISTIC

σer	erat	ŀΔ	RT	NN	FΤ
201	וכו מי	LC.	\mathbf{D}	ININ	

Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model.

Usage

```
## S3 method for class 'BINNET'
generate(x, new_data, specials = NULL, ...)
```

Arguments

```
x An object.

new_data A tsibble containing the time points and exogenous regressors to produce forecasts for.

specials (passed by fabletools::generate.mdl_df()).

... Other arguments passed to methods
```

Examples

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year"))) |>
  generate()
```

generate.LOGISTIC

Generate new data from a fable model

Description

Simulates future paths from a dataset using a fitted model.

Usage

```
## S3 method for class 'LOGISTIC'
generate(x, new_data, specials, ...)
```

Arguments

X	An object.
new_data	A tsibble containing the time points and exogenous regressors to produce fore- casts for.
specials	<pre>(passed by fabletools::generate.mdl_df()).</pre>
	Other arguments passed to methods

glance.BINNET 7

Examples

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year"))) |>
  generate()
```

glance.BINNET

Glance a BINNET model

Description

Construct a single row summary of the BINNET model. Contains the variance of residuals (sigma2).

Usage

```
## S3 method for class 'BINNET'
glance(x, ...)
```

Arguments

x model or other R object to convert to single-row data frame

... Other arguments ignored

Value

A one row tibble summarising the model's fit.

Examples

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year"))) |>
  glance()
```

glance.LOGISTIC

Glance a LOGISTIC

Description

Construct a single row summary of the LOGISTIC model.

Usage

```
## S3 method for class 'LOGISTIC'
glance(x, ...)
```

8 LOGISTIC

Arguments

x model or other R object to convert to single-row data frame

... other arguments passed to methods

Details

Contains the R squared ($r_squared$), variance of residuals (sigma2), the log-likelihood (log_lik), and information criterion (AIC, AICc, BIC).

Value

A one row tibble summarising the model's fit.

Examples

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year"))) |>
  glance()
```

LOGISTIC

Fit a linear model with time series components

Description

The model formula will be handled using stats::model.matrix(), and so the the same approach to include interactions in stats::lm() applies when specifying the formula. In addition to stats::lm(), it is possible to include common_xregs in the model formula, such as trend(), season(), and fourier().

Usage

```
LOGISTIC(formula)
```

Arguments

formula

Model specification.

Value

A model specification.

melb_rain 9

Specials

xreg: Exogenous regressors can be included in a LOGISTIC model without explicitly using the xreg() special. Common exogenous regressor specials as specified in common_xregs can also be used. These regressors are handled using stats::model.frame(), and so interactions and other functionality behaves similarly to stats::lm().

```
xreg(...)
```

... Bare expressions for the exogenous regressors (such as log(x))

See Also

```
stats::lm(), stats::model.matrix() Forecasting: Principles and Practices, Time series regres-
sion models (chapter 6)
```

Examples

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year")))
```

melb_rain

Daily rainfall in Melbourne, Australia

Description

A dataset containing daily rainfall amounts from 1 January 2000 to 31 December 2011.

Usage

```
melb_rain
```

Format

A tsibble data frame with 4322 rows and 3 variables.

Source

Australian Bureau of Meteorology. http://www.bom.gov.au/climate/data/

10 refit.LOGISTIC

refit.BINNET	Refit a BINNET model
I CI I C. DINNE I	Keju a Diiviveli moaci

Description

Applies a fitted BINNET model to a new dataset.

Usage

```
## S3 method for class 'BINNET'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
```

Arguments

object A model for which forecasts are required.

new_data A tsibble containing the time points and exogenous regressors to produce fore-

casts for.

specials (passed by fabletools::forecast.mdl_df()).

reestimate If TRUE, the networks will be initialized with random starting weights to suit the

new data. If FALSE, for every network the best individual set of weights found

in the pre-estimation process is used as the starting weight vector.

... Other arguments passed to methods

Value

A refitted model.

|--|--|

Description

Applies a fitted LOGISTIC to a new dataset.

Usage

```
## S3 method for class 'LOGISTIC'
refit(object, new_data, specials = NULL, reestimate = FALSE, ...)
```

residuals.BINNET

Arguments

object A fitted model object.

new_data A tsibble containing the time points and exogenous regressors for which a refit

is required.

specials A list of special functions used in the model, (passed by fabletools::forecast.mdl_df).

reestimate If TRUE, the networks will be initialized with random starting weights to suit

the new data. If FALSE, for every network the best individual set of weights

found in the pre-estimation process is used as the starting weight vector.

... Other arguments passed to methods

residuals.BINNET

Extract residuals from a fable model.

Description

Extracts the residuals.

Usage

```
## S3 method for class 'BINNET'
residuals(object, ...)
```

Arguments

object Fitted model

... Other arguments ignored

Examples

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year"))) |>
  residuals()
```

residuals.LOGISTIC

Extract residuals from a fable model.

Description

Extracts the residuals.

12 tidy.BINNET

Usage

```
## S3 method for class 'LOGISTIC'
residuals(
  object,
  type = c("deviance", "innovation", "pearson", "working", "response", "partial"),
   ...
)
```

Arguments

object Fitted model

type the type of residuals which should be returned. alternatives are: "deviance" (default), "pearson", "working", "response", and "partial". Can be abbreviated.

Other arguments ignored

Examples

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year"))) |>
  residuals(type = "deviance")
```

tidy.BINNET

Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage

```
## S3 method for class 'BINNET' tidy(x, ...)
```

Arguments

x An object to be converted into a tidy tibble::tibble().... Additional arguments to tidying method.

```
melb_rain |>
  model(nn = BINNET(Wet ~ fourier(K = 1, period = "year"))) |>
  tidy()
```

tidy.LOGISTIC 13

tidy.LOGISTIC

Tidy a fable model

Description

Returns the coefficients from the model in a tibble format.

Usage

```
## S3 method for class 'LOGISTIC' tidy(x, ...)
```

Arguments

```
x An object to be converted into a tidy tibble::tibble().... Additional arguments to tidying method.
```

```
melb_rain |>
  model(logistic = LOGISTIC(Wet ~ fourier(K = 5, period = "year"))) |>
  tidy()
```

Index

```
* datasets
    melb_rain, 9
BINNET, 2
common_xregs, 8, 9
fabletools::forecast.mdl_df(), 4, 5, 10
fabletools::generate.mdl_df(), 6
fitted.BINNET, 3
fitted.LOGISTIC, 4
forecast.BINNET, 4
forecast.LOGISTIC, 5
generate.BINNET, 6
{\tt generate.LOGISTIC}, {\color{red} 6}
glance.BINNET, 7
glance.LOGISTIC, 7
LOGISTIC, 8
melb_rain, 9
refit.BINNET, 10
refit.LOGISTIC, 10
report.BINNET (BINNET), 2
report.LOGISTIC (LOGISTIC), 8
residuals.BINNET, 11
residuals.LOGISTIC, 11
stats::lm(), 8, 9
stats::model.frame(),9
stats::model.matrix(), 8, 9
tibble::tibble(), 12, 13
tidy.BINNET, 12
tidy.LOGISTIC, 13
```