Package: bfast 1.7.0

Dainius Masiliūnas

bfast: Breaks for Additive Season and Trend

Decomposition of time series into trend, seasonal, and remainder components with methods for detecting and characterizing abrupt changes within the trend and seasonal components. 'BFAST' can be used to analyze different types of satellite image time series and can be applied to other disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology, and econometrics. The algorithm can be extended to label detected changes with information on the parameters of the fitted piecewise linear models. 'BFAST' monitoring functionality is described in Verbesselt et al. (2010) <doi:10.1016/j.rse.2009.08.014>. 'BFAST monitor' provides functionality to detect disturbance in near real-time based on 'BFAST'- type models, and is described in Verbesselt et al. (2012) <doi:10.1016/j.rse.2012.02.022>. 'BFAST Lite' approach is a flexible approach that handles missing data without interpolation, and will be described in an upcoming paper. Furthermore, different models can now be used to fit the time series data and detect structural changes (breaks).

Authors:Jan Verbesselt [aut], Dainius Masiliūnas [aut, cre], Achim Zeileis [aut], Rob Hyndman [ctb], Marius Appel [aut], Martin Jung [ctb], Andrei Mîrț [ctb], Paulo Negri Bernardino [ctb], Dongdong Kong [ctb]

bfast_1.7.0.tar.gz
bfast_1.7.0.zip(r-4.5)bfast_1.7.0.zip(r-4.4)bfast_1.7.0.zip(r-4.3)
bfast_1.7.0.tgz(r-4.4-x86_64)bfast_1.7.0.tgz(r-4.4-arm64)bfast_1.7.0.tgz(r-4.3-x86_64)bfast_1.7.0.tgz(r-4.3-arm64)
bfast_1.7.0.tar.gz(r-4.5-noble)bfast_1.7.0.tar.gz(r-4.4-noble)
bfast_1.7.0.tgz(r-4.4-emscripten)bfast_1.7.0.tgz(r-4.3-emscripten)
bfast.pdf |bfast.html
bfast/json (API)
NEWS

# Install 'bfast' in R:
install.packages('bfast', repos = c('https://robjhyndman.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bfast2/bfast/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • dates - A vector with date information
  • harvest - 16-day NDVI time series for a Pinus radiata plantation.
  • ndvi - A random NDVI time series
  • simts - Simulated seasonal 16-day NDVI time series
  • som - Two 16-day NDVI time series from the south of Somalia

On CRAN:

cpp

7.90 score 41 stars 1 packages 206 scripts 1.3k downloads 4 mentions 12 exports 49 dependencies

Last updated 3 months agofrom:4a5a9c8b7c. Checks:9 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 20 2025
R-4.5-win-x86_64OKJan 20 2025
R-4.5-linux-x86_64OKJan 20 2025
R-4.4-win-x86_64OKJan 20 2025
R-4.4-mac-x86_64OKJan 20 2025
R-4.4-mac-aarch64OKJan 20 2025
R-4.3-win-x86_64OKJan 20 2025
R-4.3-mac-x86_64OKJan 20 2025
R-4.3-mac-aarch64OKJan 20 2025

Exports:bfastbfast01bfast01classifybfast0nbfastlitebfastmonitorbfastppbfasttscreate16daytsset_default_optionsset_fallback_optionsset_fast_options

Dependencies:clicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvmunsellnlmennetpillarpkgconfigquadprogquantmodR6rbibutilsRColorBrewerRcppRcppArmadilloRdpackrlangsandwichscalesstrucchangeRcpptibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo