# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "oddnet" in publications use:' type: software license: GPL-3.0-or-later title: 'oddnet: Anomaly Detection in Temporal Networks' version: 0.1.1.2 doi: 10.32614/CRAN.package.oddnet abstract: Anomaly detection in dynamic, temporal networks. The package 'oddnet' uses a feature-based method to identify anomalies. First, it computes many features for each network. Then it models the features using time series methods. Using time series residuals it detects anomalies. This way, the temporal dependencies are accounted for when identifying anomalies (Kandanaarachchi, Hyndman 2022) . authors: - family-names: Kandanaarachchi given-names: Sevvandi email: sevvandik@gmail.com orcid: https://orcid.org/0000-0002-0337-0395 - family-names: Hyndman given-names: Rob email: rob.hyndman@monash.edu orcid: https://orcid.org/0000-0002-2140-5352 repository: https://robjhyndman.r-universe.dev commit: c66aafdebb9139fd5b398d62acd11019ba18342c url: https://sevvandi.github.io/oddnet/ contact: - family-names: Kandanaarachchi given-names: Sevvandi email: sevvandik@gmail.com orcid: https://orcid.org/0000-0002-0337-0395