
Package: conduits (via r-universe)
November 12, 2024

Title CONDitional UI for Time Series normalisation

Version 1.0.0

Description Provide a user interface for conditionally normalising a
timeseries.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports broom, dplyr, mgcv, purrr, rlang, scales, splines, stats,
tibble, tidyr, tsibble, forecast

Depends R (>= 4.1.0)

Suggests fable, knitr, mgcViz, rmarkdown, patchwork

URL https://github.com/PuwasalaG/conduits

BugReports https://github.com/PuwasalaG/conduits/issues

VignetteBuilder knitr

Config/pak/sysreqs libicu-dev libssl-dev

Repository https://robjhyndman.r-universe.dev

RemoteUrl https://github.com/PuwasalaG/conduits

RemoteRef HEAD

RemoteSha 80a48697c05463afa641a318d8ab1f457bc79cc4

Contents
augment.conditional_acf . 2
augment.conditional_ccf . 3
augment.conditional_moment . 5
calc_dt_CI . 6
conditional_acf . 7

1

https://github.com/PuwasalaG/conduits
https://github.com/PuwasalaG/conduits/issues

2 augment.conditional_acf

conditional_ccf . 9
conditional_mean . 11
conditional_var . 12
conduits . 14
estimate_dt . 14
NEON_PRIN_5min_cleaned . 16
normalize . 16
unnormalize . 17

Index 19

augment.conditional_acf

Augment data with information from a conditional auto-correlation fit

Description

This function produces estimated conditional autocorrelation between x_t and y_t at lag k,
i.e. $r_k = E(x_ty_t+k|z_t)$.

Usage

S3 method for class 'conditional_acf'
augment(x, ...)

Arguments

x Model object of class "conditional_acf" returned from conditional_acf with
information to append to observations.

... Additional arguments, not currently used.

Value

A tibble with information about data points.

Examples

old_ts <- NEON_PRIN_5min_cleaned |>
dplyr::select(
Timestamp, site, turbidity, level,
conductance, temperature

) |>
tidyr::pivot_wider(

names_from = site,
values_from = turbidity:temperature

)

fit_mean <- old_ts |>
conditional_mean(turbidity_downstream ~

augment.conditional_ccf 3

s(level_upstream, k = 8) +
s(conductance_upstream, k = 8) +
s(temperature_upstream, k = 8))

fit_var <- old_ts |>
conditional_var(
turbidity_downstream ~

s(level_upstream, k = 7) +
s(conductance_upstream, k = 7) +
s(temperature_upstream, k = 7),

family = "Gamma",
fit_mean = fit_mean

)
fit_c_acf <- old_ts |>

tidyr::drop_na() |>
conditional_acf(

turbidity_upstream ~ splines::ns(level_upstream, df = 5) +
splines::ns(conductance_upstream, df = 5),

lag_max = 10, fit_mean = fit_mean, fit_var = fit_var,
df_correlation = c(5, 5)

)

data_inf <- fit_c_acf |> augment()

augment.conditional_ccf

Augment data with information from a conditional cross-correlation
fit

Description

This function produces estimated conditional cross-correlation between x_t and y_t at lag k,
i.e. $r_k = E(x_ty_t+k|z_t)$.

Usage

S3 method for class 'conditional_ccf'
augment(x, ...)

Arguments

x Model object of class "conditional_ccf" returned from conditional_ccf with
information to append to observations.

... Additional arguments, not currently used.

Value

A tibble with information about data points.

4 augment.conditional_ccf

Examples

old_ts <- NEON_PRIN_5min_cleaned |>
dplyr::select(
Timestamp, site, turbidity, level,
conductance, temperature

) |>
tidyr::pivot_wider(

names_from = site,
values_from = turbidity:temperature

)

fit_mean_y <- old_ts |>
conditional_mean(turbidity_downstream ~

s(level_upstream, k = 8) +
s(conductance_upstream, k = 8) +
s(temperature_upstream, k = 8))

fit_var_y <- old_ts |>
conditional_var(
turbidity_downstream ~

s(level_upstream, k = 7) +
s(conductance_upstream, k = 7) +
s(temperature_upstream, k = 7),

family = "Gamma",
fit_mean = fit_mean_y

)

fit_mean_x <- old_ts |>
conditional_mean(turbidity_upstream ~

s(level_upstream, k = 8) +
s(conductance_upstream, k = 8) +
s(temperature_upstream, k = 8))

fit_var_x <- old_ts |>
conditional_var(
turbidity_upstream ~

s(level_upstream, k = 7) +
s(conductance_upstream, k = 7) +
s(temperature_upstream, k = 7),

family = "Gamma",
fit_mean = fit_mean_x

)

fit_c_ccf <- old_ts |>
tidyr::drop_na() |>
conditional_ccf(

I(turbidity_upstream * turbidity_downstream) ~ splines::ns(
level_upstream,
df = 5

) +
splines::ns(conductance_upstream, df = 5),

lag_max = 10,

augment.conditional_moment 5

fit_mean_x = fit_mean_x, fit_var_x = fit_var_x,
fit_mean_y = fit_mean_y, fit_var_y = fit_var_y,
df_correlation = c(5, 5)

)

data_inf <- fit_c_ccf |> augment()

augment.conditional_moment

Augment data with information from a conditional mean fit or condi-
tional variance fit

Description

This function produces partial residuals for each predictor, and the estimated conditional means,
standard error and confidence limits.

Usage

S3 method for class 'conditional_moment'
augment(x, level = 0.95, ...)

Arguments

x Model object of class "conditional_moment" returned from conditional_mean
or conditional_var with information to append to observations.

level Confidence level. Default is set to 0.95.

... Additional arguments, not currently used

Value

A tibble with information about data points.

See Also

gam

Examples

data <- NEON_PRIN_5min_cleaned |>
dplyr::filter(site == "upstream") |>
dplyr::select(Timestamp, turbidity, level, conductance, temperature)

fit_mean <- data |>
conditional_mean(turbidity ~ s(level, k = 8) +
s(conductance, k = 8) + s(temperature, k = 8))

data_inf <- fit_mean |> augment()

6 calc_dt_CI

calc_dt_CI Computing bootstrapped confidence intervals for dt

Description

This function computes the bootstrapped confidence intervals for dt. It resample the residuals from
the various models used in the conditional cross-correlation calculation to generate new data. As the
residuals are serially correlated, a sieve bootstrap approach to capture the autocorrelation structure
in the data.

Usage

calc_dt_CI(x, m, new_data = NULL)

Arguments

x Model object of class "conditional_ccf" returned from conditional_ccf

m number of replications for boostrap confidence intervals

new_data the dataset with the some predictors that are set to the median value (if required).
Default is set to NULL.

Value

A tibble with estimated time lag "dt"

Author(s)

Priyanga Dilini Talagala & Puwasala Gamakumara

Examples

Not run:
old_ts <- NEON_PRIN_5min_cleaned |>

dplyr::select(
Timestamp, site, turbidity, level, temperature

) |>
tidyr::pivot_wider(

names_from = site,
values_from = turbidity:temperature

)
fit_mean_y <- old_ts |>

conditional_mean(turbidity_downstream ~
s(level_upstream, k = 5) +
s(temperature_upstream, k = 5)

)
fit_var_y <- old_ts |>

conditional_var(
turbidity_downstream ~

conditional_acf 7

s(level_upstream, k = 4) +
s(temperature_upstream, k = 4),

family = "Gamma",
fit_mean = fit_mean_y

)
fit_mean_x <- old_ts |>

conditional_mean(turbidity_upstream ~
s(level_upstream, k = 5) +
s(temperature_upstream, k = 5)

)
fit_var_x <- old_ts |>

conditional_var(
turbidity_upstream ~

s(level_upstream, k = 4) +
s(temperature_upstream, k = 4),

family = "Gamma",
fit_mean = fit_mean_x

)
fit_c_ccf <- old_ts |>

tidyr::drop_na() |>
conditional_ccf(

I(turbidity_upstream * turbidity_downstream) ~
splines::ns(level_upstream, df = 3) +
splines::ns(temperature_upstream, df = 3),

lag_max = 10,
fit_mean_x = fit_mean_x, fit_var_x = fit_var_x,
fit_mean_y = fit_mean_y, fit_var_y = fit_var_y,
df_correlation = c(3, 3)

)
df_dt <- fit_c_ccf |> calc_dt_CI(100)

Calculate dt vs an upstream covariate while holding the
remaining upstream covariates at their medians
new_data <- fit_c_ccf$data
new_data <- new_data |>

dplyr::mutate(temperature_upstream = median(temperature_upstream))
df_dt2 <- fit_c_ccf |> calc_dt_CI(100, new_data)

End(Not run)

conditional_acf Computing conditional autocorrelations at given lags

Description

This function computes autocorrelation between x_t and y_t+k at $k = 1,2,...$ conditional on
a set of time series z_t

8 conditional_acf

Usage

conditional_acf(data, formula, lag_max, fit_mean, fit_var, df_correlation)

Arguments

data a tibble containing all the time series including $ystar*ystar_t-k$ which are
uniquely identified by the corresponding Timestamp.

formula A GAM formula. See formula.gam.

lag_max Maximum lag at which to calculate the conditional acf

fit_mean Model object of class "conditional_moment" returned from conditional_mean

fit_var Model object of class "conditional_moment" returned from conditional_var

df_correlation a vector specifying the degrees of freedom to be considered for each numer-
ical predictor when fitting additive models for conditional auto-correlations.
Each component of the vector should corresponds to each predictor specified
in "z_numeric".

Details

Suppose x_t and y_t are conditionally normalised with respect to z_t using conditional_mean
and conditional_var. Then we can estimate the conditional cross-correlation between x_t and
y_t at lag k, i.e. $r_k = E(x_ty_t+k|z_t)$ via generalised additive models (GAM). conditional_ccf
uses natural splines implemented in splines package to estimate the conditional cross-correlations
between two time series given a set of time series predictors. Users first need to normalise x_t
and y_t at lag k using conditional_mean and conditional_var

Value

The function returns a list of objects of class "glm" as described in glm.

See Also

glm

Examples

old_ts <- NEON_PRIN_5min_cleaned |>
dplyr::select(
Timestamp, site, turbidity, level,
conductance, temperature

) |>
tidyr::pivot_wider(

names_from = site,
values_from = turbidity:temperature

)

fit_mean <- old_ts |>
conditional_mean(turbidity_downstream ~

s(level_upstream, k = 8) +
s(conductance_upstream, k = 8) +

conditional_ccf 9

s(temperature_upstream, k = 8))

fit_var <- old_ts |>
conditional_var(
turbidity_downstream ~

s(level_upstream, k = 7) +
s(conductance_upstream, k = 7) +
s(temperature_upstream, k = 7),

family = "Gamma",
fit_mean = fit_mean

)
fit_c_acf <- old_ts |>

tidyr::drop_na() |>
conditional_acf(

turbidity_upstream ~ splines::ns(level_upstream, df = 5) +
splines::ns(conductance_upstream, df = 5),

lag_max = 10, fit_mean = fit_mean, fit_var = fit_var,
df_correlation = c(5, 5)

)

conditional_ccf Computing conditional cross-correlations at given lags

Description

This function computes cross correlation between x_t and y_t+k at $k = 1,2,...$ conditional on
a set of time series z_t

Usage

conditional_ccf(
data,
formula,
lag_max = 10,
fit_mean_x,
fit_var_x,
fit_mean_y,
fit_var_y,
df_correlation

)

Arguments

data a tibble containing all the time series including ystar*xstar which are uniquely
identified by the corresponding Timestamp.

formula A GAM formula. The response variable should be in the format of I(x*y) ~ .
See formula.gam.

lag_max Maximum lag at which to calculate the conditional ccf

10 conditional_ccf

fit_mean_x Model object of class "conditional_moment" returned from conditional_mean
for series x

fit_var_x Model object of class "conditional_moment" returned from conditional_var
for series x

fit_mean_y Model object of class "conditional_moment" returned from conditional_mean
for series y

fit_var_y Model object of class "conditional_moment" returned from conditional_var
for series y

df_correlation a vector specifying the degrees of freedom to be considered for each numerical
predictor when fitting additive models for conditional cross-correlations. Each
component of the vector should corresponds to the degrees of freedom each
predictor.

Details

Suppose x_t and y_t are conditionally normalised with respect to z_t using conditional_mean
and conditional_var. Then we can estimate the conditional cross-correlation between x_t and
y_t at lag k, i.e. $r_k = E(x_ty_t+k|z_t)$ via generalised additive models (GAM). conditional_ccf
uses natural splines implemented in splines package to estimate the conditional cross-correlations
between two time series given a set of time series predictors. Users first need to normalise x_t
and y_t at lag k using conditional_mean and conditional_var

Value

The function returns a list of objects of class "glm" as described in glm. the length og the list is
equal to lag_max

See Also

glm

Examples

old_ts <- NEON_PRIN_5min_cleaned |>
dplyr::select(
Timestamp, site, turbidity, level,
conductance, temperature

) |>
tidyr::pivot_wider(

names_from = site,
values_from = turbidity:temperature

)

fit_mean_y <- old_ts |>
conditional_mean(turbidity_downstream ~

s(level_upstream, k = 8) +
s(conductance_upstream, k = 8) +
s(temperature_upstream, k = 8))

fit_var_y <- old_ts |>

conditional_mean 11

conditional_var(
turbidity_downstream ~

s(level_upstream, k = 7) +
s(conductance_upstream, k = 7) +
s(temperature_upstream, k = 7),

family = "Gamma",
fit_mean = fit_mean_y

)

fit_mean_x <- old_ts |>
conditional_mean(turbidity_upstream ~

s(level_upstream, k = 8) +
s(conductance_upstream, k = 8) +
s(temperature_upstream, k = 8))

fit_var_x <- old_ts |>
conditional_var(
turbidity_upstream ~

s(level_upstream, k = 7) +
s(conductance_upstream, k = 7) +
s(temperature_upstream, k = 7),

family = "Gamma",
fit_mean = fit_mean_x

)

fit_c_ccf <- old_ts |>
tidyr::drop_na() |>
conditional_ccf(

I(turbidity_upstream * turbidity_downstream) ~ splines::ns(
level_upstream,
df = 5

) +
splines::ns(temperature_upstream, df = 5),

lag_max = 10,
fit_mean_x = fit_mean_x, fit_var_x = fit_var_x,
fit_mean_y = fit_mean_y, fit_var_y = fit_var_y,
df_correlation = c(5, 5)

)

conditional_mean Estimating conditional mean of a time series

Description

This function estimates the means of a time series conditional on a set of other times series via
additive models.

Usage

conditional_mean(data, formula)

12 conditional_var

Arguments

data a tibble containing all the time series which are uniquely identified by the corre-
sponding Timestamp.

formula A GAM formula. See formula.gam. The details of model specification are
given under ‘Details’.

Details

Suppose x_t is a time series where its mean is a function of z_t. i.e. $E(x_t|z_t) = m_x(z_t)$.
Then $m_x(z_t)$ can be estimated via generalised additive models (GAM). This function uses
GAMs implemented in mgcv package to estimate the conditional means of a time series given a set
of time series predictors.

Value

The function returns an object of class "gam" as described in gamObject.

See Also

gam

Examples

data <- NEON_PRIN_5min_cleaned |>
dplyr::filter(site == "upstream") |>
dplyr::select(Timestamp, turbidity, level, conductance, temperature)

fit_mean <- data |>
conditional_mean(turbidity ~ s(level, k = 8) +
s(conductance, k = 8) + s(temperature, k = 8))

conditional_var Estimating conditional variance of a time series

Description

This function estimates the variance of a time series conditional on a set of other times series via
additive models.

Usage

conditional_var(data, formula, family = c("Gamma", "lognormal"), fit_mean)

conditional_var 13

Arguments

data A tibble containing all the time series which are uniquely identified by the cor-
responding Timestamp.

formula An object of class "formula": a symbolic description of the model to be fitted.
The details of model specification are given under ‘Details’.

family the family to be used in conditional variance model. Currently this can take
either "Gamma" or "lognormal".

fit_mean A GAM object return from conditional_mean

Details

Suppose x_t is a time series where its variance is a function of z_t. i.e. $Var(x_t|z_t) =
v_x(z_t)$. Then $v_x(z_t)$can be estimated via generalised additive models (GAM). This func-
tion uses GAMs implemented in mgcv package to estimate the conditional variance of a time series
given a set of time series predictors.

Value

The function returns an object of class "gam" as described in gamObject.

See Also

gam and ns.

Examples

data <- NEON_PRIN_5min_cleaned |>
dplyr::filter(site == "upstream") |>
dplyr::select(Timestamp, turbidity, level, conductance, temperature)

fit_mean <- data |>
conditional_mean(turbidity ~ s(level, k = 8) +
s(conductance, k = 8) + s(temperature, k = 8))

Not run:
fit_var <- data |>

conditional_var(
turbidity ~ s(level, k = 7) + s(conductance, k = 7) + s(temperature, k = 7),
family = "Gamma",
fit_mean = fit_mean

)

End(Not run)

14 estimate_dt

conduits conduits: CONDitional User Interface for Time Series normalisation

Description

Methods and tools for conditional normalisation of time series using additive models. This includes
functions to estimate conditional means, conditional variances, conditional autocorrelation func-
tions and conditional cross-correlation functions. Examples show these functions being used to
estimate river flow time between two sensor locations in a river system.

Author(s)

Puwasala Gamakumara, Priyanga Dilini Talagala, Rob J Hyndman

estimate_dt Estimating time delay between two sensors in a river system

Description

This function estimates the time that takes water to flow from an upstream location to a downstream
location conditional on the observed water-quality variables from the upstream sensor. That time
lag is defined as the lag that gives maximum cross-correlation conditional on upstream water-quality
variables.

Usage

estimate_dt(x)

Arguments

x Model object of class "conditional_ccf" returned from conditional_ccf

Value

A tibble with estimated time lag "dt" and corresponding maximum cross-correlation

Author(s)

Puwasala Gamakumara & Priyanga Dilini Talagala

estimate_dt 15

Examples

old_ts <- NEON_PRIN_5min_cleaned |>
dplyr::select(
Timestamp, site, turbidity, level, temperature

) |>
tidyr::pivot_wider(

names_from = site,
values_from = turbidity:temperature

)

fit_mean_y <- old_ts |>
conditional_mean(turbidity_downstream ~

s(level_upstream, k = 5) +
s(temperature_upstream, k = 5))

fit_var_y <- old_ts |>
conditional_var(
turbidity_downstream ~

s(level_upstream, k = 4) +
s(temperature_upstream, k = 4),

family = "Gamma",
fit_mean = fit_mean_y

)

fit_mean_x <- old_ts |>
conditional_mean(turbidity_upstream ~

s(level_upstream, k = 5) +
s(temperature_upstream, k = 5))

fit_var_x <- old_ts |>
conditional_var(
turbidity_upstream ~

s(level_upstream, k = 4) +
s(temperature_upstream, k = 4),

family = "Gamma",
fit_mean = fit_mean_x

)

fit_c_ccf <- old_ts |>
tidyr::drop_na() |>
conditional_ccf(

I(turbidity_upstream * turbidity_downstream) ~
splines::ns(level_upstream, df = 3) +
splines::ns(temperature_upstream, df = 3),

lag_max = 10,
fit_mean_x = fit_mean_x, fit_var_x = fit_var_x,
fit_mean_y = fit_mean_y, fit_var_y = fit_var_y,
df_correlation = c(3, 3)

)

new_data <- fit_c_ccf |> estimate_dt()

16 normalize

NEON_PRIN_5min_cleaned

Anomaly removed data for water quality variables aggregated at 5-
minute intervals from Pringle Creek, Texas.

Description

NEON_PRIN_5min_cleaned consists anomaly removed data for water quality variables from up-
stream and downstream sensors in Pringle Creek in Texas for the period spanning from 2019-07-01
to 2019-12-31 aggregated at 5-minute intervals.

Usage

NEON_PRIN_5min_cleaned

Format

A data frame with water-quality variables, level and temperature data:

Timestamp Timestamp

site site position

conductance specific conductance

dissolvedOxygen dissolved oxygen

pH pH

chlorophyll chlorophyll

turbidity turbidity

fDOM fDOM

level elevation of surface water

temperature temperature in surface water

normalize Normalize a series using conditional moments

Description

This function produces a normalized series using conditional moments.

Usage

normalize(data, y, fit_mean, fit_var)

unnormalize 17

Arguments

data a tsibble containing all the time series which are uniquely identified by the cor-
responding Timestamp.

y The variable name

fit_mean Model object of class "conditional_moment" returned from conditional_mean
with information to append to observations.

fit_var Model object of class "conditional_moment" returned from conditional_var
with information to append to observations.

Value

A vector of conditional normliased series

Examples

data <- NEON_PRIN_5min_cleaned |>
dplyr::filter(site == "upstream") |>
dplyr::select(Timestamp, turbidity, level, conductance, temperature) |>
tsibble::as_tsibble(index = Timestamp)

fit_mean <- data |>
conditional_mean(turbidity ~ s(level, k = 8) +

s(conductance, k = 8) + s(temperature, k = 8))

fit_var <- data |>
conditional_var(
turbidity ~ s(level, k = 7) + s(conductance, k = 7) + s(temperature, k = 7),
family = "Gamma",
fit_mean = fit_mean

)

new_ts <- data |>
dplyr::mutate(ystar = conduits::normalize(data, turbidity, fit_mean, fit_var))

unnormalize Unnormalize a series using conditional moments

Description

This function produces an unnormalized series using conditional moments.

Usage

unnormalize(data, ystar, fit_mean, fit_var)

18 unnormalize

Arguments

data a tsibble containing all the time series which are uniquely identified by the cor-
responding Timestamp.

ystar The normalized variable name

fit_mean Model object of class "conditional_moment" returned from conditional_mean
with information to append to observations.

fit_var Model object of class "conditional_moment" returned from conditional_var
with information to append to observations.

Value

A tsibble with the conditional normliased series

Examples

data <- NEON_PRIN_5min_cleaned |>
dplyr::filter(site == "upstream") |>
dplyr::select(Timestamp, turbidity, level, conductance, temperature) |>
tsibble::as_tsibble(index = Timestamp)

fit_mean <- data |>
conditional_mean(turbidity ~ s(level, k = 8) +

s(conductance, k = 8) + s(temperature, k = 8))

fit_var <- data |>
conditional_var(
turbidity ~ s(level, k = 7) + s(conductance, k = 7) + s(temperature, k = 7),
family = "Gamma",
fit_mean = fit_mean

)

new_ts <- data |>
dplyr::mutate(ystar = normalize(data, turbidity, fit_mean, fit_var))

For demonstrative purposes, declare three data points
as missing values.
new_ts[3:5, 6] <- NA

Not run:
library(fable)
library(dplyr)
impute_ts <- new_ts |>

model(ARIMA(ystar)) |>
interpolate(new_ts) |>
rename(y_star_impt = ystar) |>
full_join(new_ts, by = "Timestamp")

impute_ts <- impute_ts
mutate(y = unnormalize(impute_ts, y_star_impt, fit_mean, fit_var))

End(Not run)

Index

∗ datasets
NEON_PRIN_5min_cleaned, 16

augment.conditional_acf, 2
augment.conditional_ccf, 3
augment.conditional_moment, 5

calc_dt_CI, 6
conditional_acf, 2, 7
conditional_ccf, 3, 6, 9, 14
conditional_mean, 5, 8, 10, 11, 13, 17, 18
conditional_var, 5, 8, 10, 12, 17, 18
conduits, 14

estimate_dt, 14

formula.gam, 8, 9, 12

gam, 5, 12, 13
gamObject, 12, 13
glm, 8, 10

NEON_PRIN_5min_cleaned, 16
normalize, 16
ns, 13

tibble, 2, 3, 5, 6, 14
tsibble, 18

unnormalize, 17

19

	augment.conditional_acf
	augment.conditional_ccf
	augment.conditional_moment
	calc_dt_CI
	conditional_acf
	conditional_ccf
	conditional_mean
	conditional_var
	conduits
	estimate_dt
	NEON_PRIN_5min_cleaned
	normalize
	unnormalize
	Index

